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Background 

In 2021, the Geospatial Technology and 

Applications Center (GTAC) began collaborating 

with the Office of Sustainability and Climate (OSC) 

and cooperators in USFS Region 6 (Washington 

state and Oregon) and Wyoming to employ 

retrospective and near real-time remote sensing-

based automated algal bloom mapping techniques. 

While these methods were effective at detecting 

algal blooms in areas where water bodies are 

generally clear, false positives in water bodies that 

typically lack clarity compromised outputs’ utility. 

During FY 2023, cooperators from the Bridger-

Teton and Shoshone National Forests collaborated 

with GTAC to further explore a new mapping 

method that incorporates available field 

observations into a machine learning modeling 

framework to provide modeled values of 

cyanobacteria cell count and biovolume. The goal 

of this approach was to mitigate false positives 

common in previous approaches, and to provide a 

tool for visualizing the outputs.  

This document provides a brief description of the 

resulting methods and how to access the products. 

Methods 

Study Area 

The study area includes all of Wyoming and the 

Greater Yellowstone Ecosystem (GYE; Figure 1). 

While field sample data were only collected from 

across Wyoming, extending beyond that region 

allows us to evaluate the robustness of the model in 

other locations. 

 

 
Figure 1. Bloom Mapper study area that includes the state of 

Wyoming and the Greater Yellowstone Ecosystem. 

Computing Environment 

We used Google Earth Engine (GEE) (Gorelick 

2017) for all earth observation and terrain data 

access, computation, and output visualization. This 

is made possible by a USDA Forest Service 

enterprise agreement with Google. GEE was chosen 

due to its ability to quickly prototype and test new 

approaches and then rapidly scale to large-area and 

multi-temporal applications. 

Remote Sensing Data Preparation 

Copernicus Sentinel- A and B Multispectral 

Instrument Level-1C (S2) images were accessed 

through GEE. All S2 images had the S2Cloudless 

cloud mask applied (where cloud probability > 20; 

Zupanc 2017), and cloud shadows removed using 

the Temporal Dark Outlier Mask (TDOM; 

Housman et al. 2018). All Sentinel-2 data were 

resampled to 10 m spatial resolution and snapped to 

the Conterminous United States NLCD USGS 

Albers Equal Area WGS 84 grid using cubic 
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convolution. All Sentinel-2 data preparation 

methods are found within GTAC’s GEE data 

processing and visualization package geeViz 

(https://pypi.org/project/geeViz/; 

https://github.com/gee-community/geeViz;  

https://code.fs.usda.gov/forest-service/geeViz;) 

 

Water Mask Model  

Prior iterations of this project demonstrated that up-

to-date water masks are needed to avoid false 

positives on the edge of reservoirs and other water 

bodies with fluctuating levels. Since reservoirs can 

significantly fluctuate within a single year, existing 

water masks were insufficiently up-to-date for near 

real-time mapping. In 2022, we developed a basic 

water masking method that identified areas that 

were dark, wet, and flat (See 2022 Closeout 

Presentation). This method works well but will 

commit areas of wet snow/ice, which are then often 

identified as blooms. 

To help mitigate committing wet snow/ice as 

blooms, we developed a custom supervised water 

mask model. We then used this model to create a 

water mask for each Sentinel-2 composite used for 

both model calibration and application in the 

forthcoming steps. 

We manually collected the training data in a non-

systematic manner using basic image interpretation 

of a late summer image within the Google Earth 

Engine Playground. We collected a total of 105 

snow/ice samples, 170 water samples, and 259 non-

snow/ice or non-water samples (notably terrain 

shadows). 

We then used these data with a median Sentinel-2 

composite from 2018-2022 August 1-August 16, 

along with various terrain metrics in a Random 

Forest classification model (Breiman 2001) using 

the smileRandomForest function within GEE with 

150 trees. The model variable importance can be 

found in table 1 (See table 2 for a description of the 

variables). 

Table 1. Water model variable importance. The top variables are 

dominated by tasseled cap transformation variables and terrain 

slope. 

Name Importance 

sixth 22.23 

slope 16.77 

tcAngleBG 15.01 

wetness 13.29 

NDVI 12.54 

fifth 10.88 

tcAngleBW 10.29 

greenness 10.17 

hillshade 9.03 

NDMI 8.96 

elevation 8.64 

green 7.71 

brightness 7.56 

NDSI 7.52 

re1 7.45 

tcDistBW 7.03 

tcDistGW 6.98 

tcDistBG 6.59 

tcAngleGW 6.37 

red 5.70 

blue 5.57 

nir 5.32 

fourth 5.27 

aspect 5.23 

re2 4.91 

NBR 4.59 

re3 4.57 

NDCI 4.34 

bloom2 3.99 

swir2 3.98 

NDGI 3.43 

tpi_59 2.90 

nir2 2.63 

https://pypi.org/project/geeViz/
https://github.com/gee-community/geeViz
https://code.fs.usda.gov/forest-service/geeViz
https://usfs.app.box.com/file/992262027525
https://usfs.app.box.com/file/992262027525
https://code.earthengine.google.com/?scriptPath=users%2Faaronkamoske%2FAlgalBlooms%3AWater_Training.js
https://code.earthengine.google.com/?scriptPath=users%2Faaronkamoske%2FAlgalBlooms%3AWater_Training.js


 

3 

 

tpi_29 2.36 

swir1 2.21 

waterVapor 1.82 

cirrus 1.68 

The out of bag (OOB) model accuracy is 99.4%. 

However, since the sample was not randomly 

located, this is not a statistically valid estimate of 

the accuracy of the water mask. 

Model Calibration Data 

Project cooperators provided two types of model 

calibration data. The first type was field 

observations from the Wyoming Department of 

Environmental Quality (WY DEQ) Harmful 

Cyanobacterial Blooms (HCB) database 

(https://www.wyohcbs.org/). This database consists 

of field samples taken over the past several years 

throughout Wyoming (figure 2). The cyanobacteria 

cell count (cells/ml) and biovolume (µm3) are two 

attributes we modeled. 

 
Figure 2. Overview of HCB sample locations throughout Wyoming 

Since HCB data generally have cyanobacteria 

present, the models also need calibration locations 

where cyanobacteria are absent. Field experts on the 

Bridger-Teton National Forest provided a list of 

water bodies that are known to not experience algal 

blooms. For each of those water bodies, we first 

applied the water model (outlined above) to a 

median Sentinel-2 composite image from August 1-

August 16 of each year from 2018-2022. The water 

extent mask was then buffered inward 3 pixels (30 

m) to reduce the likelihood of any water edge 

contamination of clean samples. We then drew 150 

random samples from within the water mask to 

serve as our cyanobacteria negative model 

calibration data (figure 3). 

 

 
Figure 3. Example clean water body centroid with the resulting water 

mask in the upper image. The lower image then shows the resulting 

150 clean training sample locations 

Model Training Data Extraction 

For each HCB sample, we first computed the 

median cloud and cloud shadow-free Sentinel-2 

composite value from two weeks before and after 

the sample date. Most HCB samples were located 

on the edge of water bodies. In order to avoid 

possible contamination by non-water pixels, we 

then applied the water mask model to the composite 

to exclude non-water observations. We then 
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buffered the water the mask inward 1 pixel (10 m) 

to further avoid water edge pixels. To mitigate the 

inclusion of noise and allow for some error in the 

sample location information, we computed the 

mean of a 5x5 pixel window of the composite 

values within the water mask as the value for each 

sample. Additionally, elevation data were included 

from the USGS 3DEP 10 m digital elevation model 

for the sample location 

(https://www.usgs.gov/media/files/3dep-spatial-

metadata-glossary). The complete list of bands that 

we used in our models can be found in Table 2Table 

3. It includes the spectral bands from Sentinel-2, 

various indices and transformations, and elevation. 

Table 2. Bands used in the cyanobacteria count and biovolume 

models. Related source information is also provided. 

Sentinel 2 Band 

Name 

Descriptive 

Band Name Algorithm 

Band/Index 

Source 

B1 cb NA 

Sentinel 2 

Level-1C 

B2 blue NA 

Sentinel 2 

Level-1C 

B3 green NA 

Sentinel 2 

Level-1C 

B4 red NA 

Sentinel 2 

Level-1C 

B5 re1 NA 

Sentinel 2 

Level-1C 

B6 re2 NA 

Sentinel 2 

Level-1C 

B7 re3 NA 

Sentinel 2 

Level-1C 

B8 nir NA 

Sentinel 2 

Level-1C 

B8A nir2 NA 

Sentinel 2 

Level-1C 

B9 waterVapor NA 

Sentinel 2 

Level-1C 

B10 cirrus NA 

Sentinel 2 

Level-1C 

B11 swir1 NA 

Sentinel 2 

Level-1C 

B12 swir2 NA 

Sentinel 2 

Level-1C 

NA NBR (nir-swir2)/(nir+swir2) 

van 

Wagtendonk  

et al 2004 

NA NDCI (re1-red)/(re1+red) 

Mishra & 

Mishra 2012 

NA NDGI 

(green-

blue)/(green+blue) 

Adaptation 

from  

Ho et al 2019 

NA bloom2 green/blue Ho et al 2019 

NA NDMI (nir-swir1)/(nir+swir1) 

Wilson & Sader 

2002 

NA NDSI 

(green-

swir1)/(green+swir1) Hall et al 1995 

NA NDVI (nir-red)/(nir+red) 

Rouse et al 

1973 

NA brightness See publication Crist 1985 

NA greenness See publication Crist 1985 

NA wetness See publication Crist 1985 

NA fourth See publication Crist 1985 

NA fifth See publication Crist 1985 

NA sixth See publication Crist 1985 

NA tcAngleBG 

atan2(brightness,greenn

ess)/pi 

Brooks et al 

2014 

NA tcAngleBW 

atan2(brightness,wetnes

s)/pi 

Brooks et al 

2014 

NA tcAngleGW 

atan2(greenness,wetnes

s)/pi 

Brooks et al 

2014 

NA tcDistBG 

hypotenuse(brightness,g

reenness) 

Brooks et al 

2014 

NA tcDistBW 

hypotenuse(brightness,

wetness) 

Brooks et al 

2014 

NA tcDistGW 

hypotenuse(greenness,

wetness) 

Brooks et al 

2014 

NA elevation NA 

USGS 3DEP 

10m 

For each clean sample, the median Sentinel-2 value 

from 2018-2022 August 1-August 16 was used (the 

same time period that was used to create the water 

mask that the clean sample was drawn from). This 

time period was determined to have a low 

likelihood of contamination from snow/ice, and 

therefore more likely to represent a clean water 

sample. 

Model Training 

We used total of 37 HCB samples with a 

cyanobacteria count > 25000 cells/ml (the WY 

advisory level threshold) and 3127 clean training 

points to calibrate two Random Forests regression 

models (Breiman 2001) – cyanobacteria count and 

cyanobacteria biovolume. The version of Random 

Forest within GEE we used is smileRandomForest. 

https://www.usgs.gov/media/files/3dep-spatial-metadata-glossary
https://www.usgs.gov/media/files/3dep-spatial-metadata-glossary
https://developers.google.com/earth-engine/apidocs/ee-classifier-smilerandomforest
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Each model consisted of 150 trees. All other 

parameters were left at the default. The models’ 

variable importance and OOB error can be found in 

table 3. 

Table 3 Final random forest models' variable importance and OOB 

error. For both models, the variables used in earlier phases of this 

project were the top predictor – bloom2 and NDGI 

Cell Count Biovolume 

Name Importance Name Importance 

bloom2 1.60E+17 bloom2 2.85E+21 

NDGI 1.31E+17 NDGI 2.11E+21 

wetness 1.10E+17 waterVapor 1.41E+21 

waterVapor 9.01E+16 tcAngleBG 1.20E+21 

tcAngleBW 8.22E+16 tcDistGW 1.12E+21 

sixth 7.89E+16 wetness 1.11E+21 

elevation 6.90E+16 greenness 9.12E+20 

greenness 6.46E+16 sixth 9.12E+20 

NDVI 6.16E+16 tcAngleBW 8.36E+20 

tcDistGW 6.03E+16 NDCI 7.38E+20 

NBR 5.98E+16 re1 7.21E+20 

NDCI 5.42E+16 brightness 6.93E+20 

tcAngleBG 4.34E+16 tcDistBW 6.88E+20 

brightness 4.26E+16 swir2 6.58E+20 

NDMI 4.24E+16 NBR 6.54E+20 

re1 4.24E+16 NDMI 6.47E+20 

swir1 4.04E+16 swir1 5.88E+20 

red 3.86E+16 red 5.58E+20 

swir2 3.26E+16 re2 5.21E+20 

fifth 2.67E+16 elevation 5.21E+20 

tcAngleGW 2.63E+16 NDVI 4.99E+20 

re2 2.57E+16 tcAngleGW 4.54E+20 

tcDistBW 2.45E+16 re3 4.39E+20 

NDSI 2.38E+16 nir 4.30E+20 

nir 2.07E+16 fourth 4.12E+20 

nir2 2.04E+16 green 3.19E+20 

blue 1.57E+16 cirrus 3.15E+20 

cirrus 1.51E+16 fifth 2.60E+20 

re3 1.45E+16 nir2 2.15E+20 

fourth 1.31E+16 blue 2.13E+20 

tcDistBG 1.23E+16 NDSI 1.20E+20 

green 1.13E+16 tcDistBG 8.50E+19 

OOB Error 

1,736,840  

cells/ml   

219,107,057 

µm3 

Notably, the first two variables for both models 

were the primary variables used in the first two 

phases of this broader effort. While the OOB error 

is statistically invalid since the input sample data 

were not randomly located, it is useful for gaining a 

sense of how well the model performed at 

predicting the values at the training sample 

locations. The OOB error was 1,736,840 cells/ml 

and 219,107,057µm3 for the cell count and 

biovolume models respectively. This indicates that 

the model outputs most likely have a wide error 

margin. This should be considered when 

interpreting outputs. For instance, any cell counts 

output below ~3,000,000 cells/ml is likely error, 

while cell counts greater than ~6,000,000 cells/ml is 

likely to have a high cell count. These OOB error 

results serve as a starting point for lowering the 

error as more field sample data become available in 

the future. 

Model Application and Output Delivery 

The models were applied to Sentinel-2 4-week 

median composite images every two weeks for 

June-October of each year from 2020-2022 for the 

Wyoming and GYE study area. An output viewer 

called Bloom Mapper is being tested to provide the 

ability to view and query outputs.  

The development version of Bloom Mapper is 

located at: https://dev.wrk.fs.usda.gov/forest-

atlas/lcms-viewer/bloom-mapper.html while the 

operational version will be hosted here: 

https://apps.fs.usda.gov/lcms-viewer/bloom-

mapper.html 

Currently, we plan to update Bloom Mapper for the 

2023 summer season to test the utility of the project 

outputs.  

https://dev.wrk.fs.usda.gov/forest-atlas/lcms-viewer/bloom-mapper.html
https://dev.wrk.fs.usda.gov/forest-atlas/lcms-viewer/bloom-mapper.html
https://apps.fs.usda.gov/lcms-viewer/bloom-mapper.html
https://apps.fs.usda.gov/lcms-viewer/bloom-mapper.html
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Project Resources 

Code 

https://code.fs.usda.gov/forest-service/AlgalBlooms 

Past years’ presentations: 

2021 Closeout Presentation: 

https://usfs.app.box.com/file/992261972325 

2022 Closeout Presentation: 

https://usfs.app.box.com/file/992262027525 

Contacts: 

Wyoming USFS Contacts: Gwen Gerber 

gwen.gerber@usda.gov, Jill McMurray 

jill.mcmurray@usda.gov 

GTAC Technical Contact: Ian Housman* 

ian.housman@usda.gov 

GTAC Leadership Contact: Janet Hsiao 

janet.hsiao@usda.gov 

GTAC Management Contact: Abigail Schaaf 

abigail.schaaf@usda.gov 

 

*Primary/corresponding author 
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